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Fitting re¯ ectivity data from liquid crystal cells using genetic
algorithms

by D. J. MIKULIN,* D. A. COLEY and J. R. SAMBLES

Department of Physics, University of Exeter, Stocker Road, Exeter, Devon,
EX4 4QL, U.K.

(Received 29 June 1996; in ® nal form 14 October 1996; accepted 20 October 1996 )

The half-leaky guided mode technique for quantifying thin optical layers is here combined
with a data ® tting routine based on a genetic algorithm to provide an immensely powerful
procedure for detailing the director pro® le in liquid crystal cells. This approach not only
provides a full description of the optical parameters of the cell, but also gives quantitative
uncertainties in these parameters. It is tested here, ® rst by ® tting to theoretically produced
data and then applied to real experimental data.

1. Introduction unknown parameters in an experimental test cell con-
sisting of only two glass plates and a nematic liquidThe principal optical tool for the study of liquid

crystals is that of polarizing optical microscopy. Because crystal, in typical commercial cells, which are much
more complex, with numerous surface layer coatings,this technique integrates the optical response through

the entire thickness of the cell, only a weighted average and especially when the liquid crystal is in a more highly
structured phase such as smectic C*, the number ofof the director orientation through the cell is obtained

and thus little detailed information can be gleaned about unknown parameters to be ® tted can rise to over sixty.
Steepest-gradient based automatic minimization rou-the structure within it, without the use of many assump-

tions. Thus microscopy could not establish the presence tines fail to navigate through the complex multi-
dimensional function minimization hyperspace to theof a chevron structure in the smectic C* phase of a

surface stabilized ferroelectric liquid crystal cell as disco- global minimum. It is thus an extremely di� cult and
time consuming process to ® nd the correct solution tovered by Reiker, Clark et al. [1] in 1987 using X-rays.

X-rays, however, only provide information about the the data, with the need simultaneously to ® nd values for
such a large number of parameters. Moreover, evenlayering within the cell. Thus X-rays and optical micro-

scopy combined still can only lead to limited information when the answer is found it is di� cult to estimate the
error associated with each parameter and even harderon the spatial variation of the director through the cell.

A better knowledge of the director pro® le could be used to quantify any degeneracy of solution.
Here we show the development of an automatedto test model theories of the elastic response of cells and

would also provide the potential for better cell design. genetic algorithm (GA) ® tting procedure which allows
rapid ® tting of the HLGM data to a multi-variableWhat is needed is a probe that can give details of the

way in which the director varies through the cell. The model of an LC cell, leading to a true global minimum,
together with error estimation and limitations ofdevelopment of the Half-Leaky Guided Mode (HLGM)

technique [2, 3] has provided just such a probe, being degeneracy.
used to unravel the various complicated structures
adopted by, for example, surface stabilized ferroelectric

2. HLGM techniqueliquid crystals.
A variety of methods for optically probing materialsSince its inception, the main problem with the use of

has been investigated over the past decade based on thethe HLGM technique with LC cells has been that of
excitation of resonance modes in the liquid crystal cell® nding the parameter values characterizing the LC cell
by measuring the angle dependent re¯ ectivities whichby ® tting theoretically modelled data to that obtained
characterize these resonances. These include the use ofexperimentally. Whilst there may be merely half a dozen
surface plasmon-polaritons [4, 5], and a range of guided
structures from fully guiding [6± 8] to fully leaky [9, 10].
The fully guiding, or attenuated total re¯ ection geometry*Author for correspondence.

e-mail: D.J.Mikulin@exeter.ac.uk, D.A.Coley@exeter.ac.uk is very powerful, but the need for metallic layers prevents
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302 D. J. Mikulin et al.

their resembling real devices. By contrast the fully-leaky cell are in some way èncoded’ into such re¯ ectivity data.
It is this information that needs to be de-crypted to givegeometry, with no metal layers and only high index

glass plates, replacing the low index plates found in real the director pro® le and other parameters. The method
employed is to match theoretically modelled data to thedevices, gives much less detailed information since the

optical modes which are excited are much broader in experimental set. Theoretical data are created by a
computer program based on Fresnel’s equations,angle (i.e. a lower Q cavity). This makes it more di� cult

to extract the desired optical tensor pro® le from the together with a model of the cell as a series of discrete
optical layers corresponding either to real layers suchre¯ ectivity data.

Subsequently the HLGM geometry [2, 3] was as the ITO or polyimide, or sub-layers of the liquid
crystal chosen such that any individual layer is opticallydeveloped to enable real cells to be studied with the one

proviso that the glass plates had to be of di� erent thin. That is to say, each layer has a thickness that is
less than the wavelength of the incident laser beamrefractive indices. It has much of the sensitivity of the

guided mode geometry, without the metal layers. Ideally divided by the refractive index of that layer. In this way
the stack of layers representing the cell appears opticallythe high index glass plate should have a refractive index

greater than the highest index of the liquid crystal and, continuous. For a nematic LC it has been found that
the LC layer can be assumed to be a single layer with asimilarly, the low index glass plate should have a lower

refractive index than the lowest of the liquid crystal. linear twist and tilt pro® le. For the complicated meso-
phases like S*

C, this approach is taken using multipleWith such a geometry there is a window of angles over
which the optical ® eld is evanescent in the substrate, yet thin layers because the available continuum theories are

not readily tractable to simple modelling.propagates in the liquid crystal producing quite sharp
half-leaky resonances within it. Monitoring the angle- Prior to this study, the ® tting process involved itera-

tion, by hand, successively changing one or more of thedependent re¯ ectivities over the range of angles which
encompass the half-leaky window then gives data which parameters and then running the modelling program to

see how the output is changed as a result. This iswhen compared with model theory yield the director
pro® le through the cell. repeated until the theoretically generated curve virtually

overlays the experimentally recorded data. At this pointThe incident laser beam is arranged to be either p- or
s-polarized (TM or TE, respectively) and either the p- the steepest-gradient minimization routine could ® nd

the true minimum. The optical parameters for eachor s-polarized re¯ ected light measured. This gives rise
to four possible output data sets, two of which are the layer, which typically include real and imaginary optical

permittivities, thicknesses and twist and tilt Euler anglesstraightforward re¯ ected signals (Rpp and Rss) and the
other two are polarization conversion or ps mixing for the liquid crystal, can then be obtained.
signals (Rps and Rsp ), where Rps , for example, signi® es
p-polarized light incident on the cell and s-polarized 3. Problems in using the HLGM technique

As indicated above, until now, for anything other thanlight re¯ ected. The output data thus consist of various
plots of re¯ ectivity (Rpp , Rps , Rsp , Rss) versus angle. A the most simple liquid crystal structures the ® tting

process has been carried out largely by hand, eventuallytypical data set is shown in ® gure 1.
All the optical parameters of every layer within the switching when the solution is close enough, to an

automatic ® tting routine based on the quasi-Newton
method, a rigorous direct calculus-based routine for
minimization of functions. Such routines are used to
minimize the sum of squares error (SOS) between the
theoretically modelled and experimentally recorded
re¯ ectivity traces. These routines work by following the
steepest local gradient to reach the function minimum.
Unfortunately, when used to ® t HLGM theory to data,
it is found that these routines often have great di� culty
converging to any solution within the set bounds. The
reasons for these problems centre on the complex multi-
dimensional function-minimization hyperspace [11].
This is the multi-dimensional landscape that represents
every point in the solution space. The solution is found
when the function is minimized for all parameters repres-
ented by the lowest point in the landscape.Figure 1. Example of a typical HLGM experimental

re¯ ectivity trace. For a typical model set of data, a set of enumerative
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303Fitting re¯ ectivity data f rom L Cs using GAs

searches has been performed around the solution vector of the processes found in nature. GAs are based on the
processes of natural selection [21] and genetics, a set of(global minimum) in order to obtain a picture of the
parameters representing one point (or solution) in thelandscape to ® nd why the calculus based routines fail.
multi-dimensional space being one ìndividual’. WhileIt is found that the hyperspace is not a simple, smooth
calculus based routines need to be supplied with aparabolic-like surface, but a highly featured space con-
previously created, guessed set of parameters from, fortaining many local minima. The routine may thus follow
example, the best obtained hand-® t, genetic algorithms,the steepest local gradient and drop to the bottom of
by contrast, use coded sets of the parameters, searchany number of these local minima, tending to become
from many points simultaneously (an individual is onetrapped and unable to reach the global minimum.
coded set and a population is the set of all the indi-Another problem is that due to the high degree of
viduals). They require only a very loosely speci® ed initialcovariance between many of the parameters, the
guess working within a very wide set of bounds for eachoptimum value of a given parameter depends on values
parameter, and progress to the solution using only thefor the others. Thus any routine that tries to optimize
® tness (e.g. SOS) of each ìndividual’ as the criterion forthem in series is likely to have very limited success; the
future iterations.parameters should be optimized in parallel to ® nd the

The simple GA consists of four basic steps: initialis-correct solution.
ation, reproduction and crossover, mutation, andA further problem concerns that of degeneracy of
selection.solution, the root cause of which is that there are only
Initialisation: Initially a set of parameters is chosen ata small number of sharp features in the angle-dependent
random from within the assigned bounds for that para-re¯ ectivity data for a real cell. This can result in the
meter. Many of these random individuals are created,possibility of there being many combinations of para-
forming a population. Each parameter value within eachmeters that can lead to similar theory traces. Degeneracy
individual is converted into binary strings. The stringshas been reduced in the past by two methods. Firstly,
of each individual are then concatenated to form a singlethe cell is fabricated in a series of stages, one surface
binary string representing that individual in the boundedlayer at a time, and at each stage the new layer (e.g.
hyperspace.ITO) is characterized to ® nd its optical parameters.
Reproduction and crossover: Pairs of individuals areSecondly, when the ® nal cell is constructed, data are
typically selected at random and are both cut at thetaken at combinations of polarizations and over a range
same, random position anywhere along their lengths.of leaky as well as the entire half-leaky window of angles.
The end portions of both strings are then swapped andThis increases the amount of data and the number of
joined on the front part of the other of the pair.features to which to ® t, and thus greatly reduces the
Mutation: There is a small probability of spontaneous

levels of degeneracy; at the same time of course, it
reversal of any binary digit in any of the o� spring.

inevitably lengthens the ® tting process.
Selection: At this point the population consists of the
® rst generation and a second generation of o� spring. All

4. The genetic algorithm individuals are tested for ® tness and a rule [22] is
To automate the laborious ® tting process, a ® tting imposed for survival to the next generation; for example,

routine is needed that has the ability to navigate through the population size can be kept constant, in which case
a highly featured landscape of local minima, plateaux the least-® t half of the population might be discarded.
and other features to reach the global minimum. The average ® tness of each successive generation is,
Calculus based routines tend to be rigorous and e� cient, on average, better than that of the preceding one (i.e.
but not robust and are thus best suited to the rapid lower SOS). Thus, as this process iterates through repro-
solution of relatively simple functions. Enumerative duction and crossover, mutation and selection, the
searches by comparison are rigorous and robust, but optimum solution is approached.
very ine� cient since the entire search space is covered, Though simple in essence, for a GA to work in
which takes considerable processor time. A third cat- practice on any particular problem, it must be custom-
egory [11] is that of random searches, which have been ized by appropriate selection of system variables such
found to be surprisingly e� ective and highly robust, but as population size, number of generations, mutation
which are once again ine� cient. There are, however, a rate, binary word lengths, size of bounded hyperspace
sub-set of random searches that use a random feature and the rules for the selection and mating processes
in a directed search making them both robust and [23 ± 26].
e� cient, the required combination for ® tting HLGM
re¯ ectivity data. 5. Use of GA to ® t to theoretically produced data

Genetic algorithms [12± 20] are one of a set of rou- The GA was ® rst tested by ® tting to theoretically
created data, so that the answer was known and thetines based on either arti® cial intelligence or mimicking
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304 D. J. Mikulin et al.

success of the GA could be analysed. The data were parameters that have relatively large deviation from the
true values: ITO and polyimide e i values, and the valuescreated to simulate a typical low surface tilt, parallel

polyimide aligned, nematic liquid crystal whose director for the grading of the low index plate. The re¯ ectivity
data were seen to be less sensitive to these parametershas a slight linear twist and tilt (splayed) variation from

the top to the bottom surfaces in a cell made of ITO in the enumerative searches showing that they do not
have a large enough e� ect on the re¯ ectivity to allowcoated glass plates. Four data sets were created repres-

enting the acquisition of data at two polarizations, at the search routine to lock onto their true values. It is
also seen that whilst the LC twist angles can be foundtwo azimuthal angles.

By the end of the initial development process the GA, to Ô 0 0́5 ß , the tilt angles can only be found to Ô 0 4́ß .
The tilts in this cell are very small and have only astarting with wide bounds which were typically the entire

possible range of values that any of the materials could relatively small e� ect on the re¯ ectivity trace.
As a further test of the ® tting routine, some theoreticalassume over a large temperature range, could ® nd the

solution to all 27 ® tting parameters within a day on a data were independently produced by a colleague, once
again for a nematic cell. Fitting proceeded with thefast desktop PC. Because of the randomness of the GA

search it is easy to estimate the error associated with author having no knowledge of the actual parameters
used. This was to avoid any in¯ uence of prejudice byeach parameter from the ® nal spread of parameter values

in the last population of individuals. the author in setting the initial bounds for the GA. This
resulted in the ® t shown in ® gure 3. The accuracies ofThe accuracy and degeneracy in the solution for any

particular cell will depend both on the con® guration of the most important parameters are listed in table 2.
From these results, the GA is clearly performing verythe cell itself and on the q̀uality’ of the re¯ ectivity data.

`Quality’ here is de® ned as data of high experimental well and the power of the HLGM technique is illustrated.
The next step was to ® t to some real nematic cell data.quality that contain enough features that are as a whole

su� ciently sensitive to each parameter which is to be
found. Put very simply, if any particular parameter has 6. Use of GA to ® t experimental data

Data were taken on a cell consisting of ITO coatedno e� ect on any feature of any of the sets of experiment-
ally measured re¯ ectivity data, its value will not be able glass plates, coated in turn with parallel-rubbed polyim-

ide and ® lled with Merck SCE13 ferroelectric liquidto be ascertained.
Figure 2 shows an example of the quality of ® t crystal raised in temperature to its nematic phase. These

data were ® tted by hand with limited success; it seemedobtained with the GA. The ® gure shows the two polar-
ization data sets at one of the two azimuthal angles that a large number of di� erent combinations of para-

meters led to ostensibly similar quality ® ts. An addedused, together with their ® tted re¯ ectivity traces. The
quality of ® t for the other azimuthal angle data sets is di� culty was that the data had been taken at only two

polarization combinations at a single azimuthal angle.similar. Table 1 shows the accuracy to which the para-
meters were found. Many are accurate to well within The ® nal GA ® t was over an order of magnitude

poorer in the SOS error than those obtained usingthe required accuracy limit of an experiment. Note the

Figure 3. GA ® t to unseen theoretically produced nematicFigure 2. GA ® t to theoretically produced nematic liquid
crystal cell re¯ ectivity data. liquid crystal cell re¯ ectivity data.
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305Fitting re¯ ectivity data f rom L Cs using GAs

Table 1. Comparison of real and ® tted values for theoretically produced nematic data.

Real Fitted
Layer Parameter value value

Matching ¯ uid (thickness in metres) er 2 9́95 2 9́949
ei 3 0́00E-6 2 9́05E-6

thickness, d 7 0́E-4 6 9́E-4

ITO er 3 8́5 3 8́5
ei 1 0́E-2 1 1́E-2

thickness, d 6 8́00E-8 6 8́15E-8

Polyimide alignment er1 3 0́0 3 0́0
ei1 0 0́060 0 0́06
er3 3 0́5 2 9́8
ei3 0 0́09 0 0́08

thickness, d 3 3́0E-8 3 5́2E-8

Nematic LC er1 2 2́000 2 2́000
ei1 3 0́E-4 3 0́E-4
er3 2 6́000 2 5́997
ei3 3 5́E-4 3 8́E-4

thickness, d 3 2́00E-6 3 1́96E-6

Nematic LC director pro® le Euler angles/ ß upper surface twist 41 5́0 41 4́9
lower surface twist 40 0́0 39 9́6

upper surface tilt 89 0́0 88 6́3
lower surface tilt 91 0́0 90 7́6

Index grading on the low index glass plate er 2 1́7 2 1́7
d 2 5́0E-7 2 2́6E-7
er 2 1́6 2 1́6
d 3 0́0E-6 2 9́9E-6
er 2 1́44 2 1́44
d 5 0́E-7 6 0́E-7

Bulk low index plate er 2 1́403 2 1́403

Table 2. Comparison of real and ® tted values for unseen theoretically produced nematic data.

Real Fitted Ô Estimated
Layer Parameter value value error

Polyimide alignment er1 2 6́9 2 6́4 1 0́E-2
ei1 7 9́9E-3 8 5́0E-3 8 5́E-3
er3 2 7́52 2 6́ 2 0́E-1
ei3 8 2́5E-4 6 9́E-3 6 9́E-3

thickness, d 2 3́0E-8 2 9́E-8 5 0́E-9

Nematic LC er1 2 1́980 2 1́980 5 0́E-5
ei1 7 7́E-4 7 5́E-4 3 0́E-5
er3 2 5́910 2 5́91 2 0́E-3
ei3 6 8́E-4 6 6́E-4 1 5́E-4

thickness, d 3 1́7E-6 3 1́6E-6 1 0́E-8

Nematic LC director pro® le Euler angles/ ß upper surface twist 33 1́0 33 2́ 2 0́E-1
lower surface twist 42 5́0 42 4́ 2 0́E-1

upper surface tilt 88 7́0 88 8́ 2 0́E-1
lower surface tilt 93 1́0 93 2́ 2 5́E-1

theoretical data. This reduction in accuracy is not sur- It seems that, for simple structures such as the one
examined here, there may be su� cient information fromprising, due to the data having random noise and

experimental errors, however the accuracy was still very a single azimuthal angle to produce accurate, non-
degenerate ® ts to the experimental data. Again it is seenhigh. The ® t is shown in ® gure 4 with the parameters

listed in table 3. that the liquid crystal tilt at the bottom surface cannot
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306 D. J. Mikulin et al.

Table 3. Fitted parameter values for a real nematic liquid crystal cell.

Fitted Ô Estimated
Layer Parameter value error

Matching ¯ uid (thickness in metres) er 2 9́949 4 0́E-5
ei 3 0́7E-6 0 0́15E-6

thickness, d 4 9́4E-4 0 0́7E-4

ITO er 4 3́6 0 0́1
ei 3 7́E-3 0 5́E-3

thickness, d 5 9́2E-8 0 0́5E-8

Polyimide alignment er1 2 6́5 0 0́4
ei1 2 7́E-3 1 3́E-3
er3 2 8́6 0 0́05
ei3 6 4́E-3 0 5́E-3

thickness, d 2 3́6E-8 0 0́5E-8

Nematic LC er1 2 2́047 0 0́001
ei1 2 9́6E-5 0 0́5E-5
er3 2 6́094 0 0́004
ei3 3 2́3E-3 0 0́5E-3

thickness, d 3 0́04E-6 0 0́01E-6

Nematic LC director pro® le Euler angles/ ß upper surface twist 60 4́4 0 0́4
lower surface twist 61 3́0 0 0́8

upper surface tilt 88 6́0 0 0́1
lower surface tilt 92 1́5 0 1́5

Index grading on the low index glass plate er 2 1́577 3 0́E-4
d 4 9́1E-7 7 0́E-9
er 2 1́456 1 0́E-4
d 8 3́E-7 1 6́E-7
er 2 1́406 3 0́E-4
d 1 3́4E-6 8 0́E-7

Bulk low index plate er 2 1́396 4 0́E-4

great accuracy are the same ones that were very hard to
® nd when the data were ® tted by hand or when using
the automatic calculus routines. These include the imagin-
ary component of the optical permittivity of the ITO, the
polyimide parameters generally and the grading on the
low index plate that has always been a problem to model.
Examination of the ® ts in ® gure 4 reveal that they are
not perfect; this is particularly evident in the Rps data due
to a combination of the re¯ ectivity axis scaling being
larger than that of the Rpp and the lower signal levels
involved. The reasons for these deviations are either errors
in the data, or that the model is not accurately simulating
the cell in some way. Probable causes are due to the
assumption of simple linear twist and tilt variations of
the nematic LC and the use of discrete three layer grading
of the bottom glass plate. In reality the grading will be

Figure 4. GA ® t to real data taken from the nematic phase some continuously varying function and a three layer
of a ferroelectric liquid crystal cell. model may be inappropriate. One might imagine that the

assumption of a linear variation of the LC director would
be determined to as high an accuracy as that at the top have a far greater e� ect than any very thin, minor surface
surface. This re¯ ects the optical electric ® eld distribution layer variation in the glass, but modelling has shown that
pro® les which are not as concentrated at the bottom this is not in fact the case and that the re¯ ectivity is

greatly a� ected by these surface layers.surface. The parameters that cannot be speci® ed with
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[4] Welford, K . R., Sambles, J. R., and Clark, M . G .,7. Conclusions
1987, L iq. Cryst., 2, 91.For several years the half-leaky guided mode technique

[5] Innes, R. A., Ashworth, S. P., and Sambles, J. R.,
has appeared to have great potential as a tool for 1989, Phys. L ett. A, 135, 357.
investigating, among other things, the structures [6] Elston, S. J., and Sambles, J. R., 1989, App. Phys. L ett.,

55, 1621.assumed by liquid crystals in real cells. This potential
[7] Elston, S. J., and Sambles, J. R., 1991, J. mod. Opt.,has not been realised due to the nature of the labour

38, 731.intensive ® tting process. In this study, to obviate this [8] Bryan-Brown, G . P., Yang, F. Z., Bradberry, G . W .,
problem, a genetic algorithm has been developed as a and Sambles, J. R., 1993, J. appl. Phys., 73, 3603.

[9] Lavers, C. R., and Sambles, J. R., 1991, Jpn. J. appl.minimization routine to ® t model theory to HLGM
Phys., 30, 729.data. It processes the parameters in a parallel fashion

[10] Lavers, C. R., Cann, P. S., Sambles, J. R., and Raynes,and does not easily become trapped by local minima.
E. P., 1991, J. mod. Opt., 38, 1451.

The ® ts to both theoretically generated and experi- [11] Goldberg, D . E., 1989, Genetic Algorithms, in Search,
mentally recorded data show the power of the HLGM Optimisation & Machine L earning (Reading,

Massachusetts: Addison-Wesley).technique and its ability to resolve great detail within
[12] Holland, J. H ., 1975, Adaptation in Natural andthe wave-guide structure. The GA enables the HLGM

Arti® cial Systems Ann Arbor: University of Michigan
technique for the ® rst time to be used as a powerful and Press.
useful technique within a realistic time frame. [13] Keane, A. J., 1995, Artif. Intell. Eng., 9, 75.
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Wat. Resour. Res., 32, 449.Once optimised it will ® nd the solution for appropriate
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Annealing (London: Pitman Publishing ).on cells containing complex phases such as the
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